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Abstract. Fast self sustained waves (autowaves) associated with chemical or phase transformations are
observed in many situations in condensed matter. They are governed neither by diffusion of matter or
heat (as in combustion processes) nor by a travelling shock wave (as in gaseous detonation). Instead, they
result from a coupling between phase transformation and the stress field, and may be classified as gasless
detonation autowaves in solids. We propose a simple model to describe these regimes. The model rests
on the classical equations of elastic deformations in a 1-dimensional solid bar, with the extra assumption
that the phase (chemical) transformation induces a change of the sound velocity. The transformations are
assumed to occur through a chain branched mechanism, which starts when the mechanical stress exceeds
a given threshold. Our investigation shows that supersonic autowaves exist in this model. In the absence of
diffusion (dissipation factor, losses), a continuum of travelling wave solutions is found. In the presence of
diffusion, a steady state supersonic wave solution is found, along with a slower wave controlled by diffusion.

PACS. 82.20.Mj Nonequilibrium kinetics – 05.70.Ln Nonequilibrium and irreversible thermodynamics

Phase transformations or chemical reactions lead in ex-
tended systems to propagating travelling waves, whereby
the stable phase invades the metastable phase [1,2]. The
propagation regime may be controlled by a diffusive trans-
fer of matter or heat. Such is the case in a number of prob-
lems originating from physics, chemistry (in particular, in
combustion [3–5]), or even in biology [6]. The correspond-
ing phenomena are governed by diffusion or heat conduc-
tivity equations which have been extensively investigated.
Faster propagation regimes have also been recognized: in
the context of gaseous detonation, the phenomena result
from a coupling between combustion (chemistry) and gas
compression (mechanics), leading to self-sustained super-
sonic waves [3,4].

Fast propagation of chemical and phase transforma-
tions also occur in a number of situations, involving con-
densed phases (contrary to detonation, which occurs in
gaseous phases). Fast decomposition of a metastable phase
has been observed in glassy semiconductors and metals,
as well as in a geological context [7,8]. The “Prince Ru-
pert drops”, and more generally, tempered glasses, which
explode as a result of a mechanical stimulation [9,10] is
certainly a very spectacular example, which has remained
a mystery for several centuries. Studies of detonation of
classical solid explosives (such as heavy metal azides), also
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reveal the existence of a fast propagation regime in solid
matrices, before the gas explosion stage [11].

In a different context, it has been shown that chemical
waves propagate at very low temperature [12,13] and at
usual temperatures [14] at rather high velocities, due to a
coupling between chemistry and mechanical deformations.
This phenomenon may be important to understand the
abundance of certain molecules (ammonia or methane) in
cold planets.

A related phenomenon occurs when an overheated liq-
uid is vaporized: depending on the precise conditions, a
slow wave, governed by diffusion, or a faster, more vio-
lent wave (hence the term “detonation boiling” [15]) may
propagate.

In the phenomena listed above, the coupling between
the stress field and the chemical reaction has been demon-
strated to be of prime importance: propagation is not con-
trolled by diffusion. The front velocity appears to be very
high, of the order of the sound velocity in some cases.
We note here that the strain field has been shown to be
important in the (slow) kinetics of some morphological
transitions in crystals and alloys [16,17].

The goal of the present letter is to introduce a sim-
ple model with an explicit coupling between phase (chem-
ical) transformation in solids and the stress field. Our
purpose at this stage is to propose a theoretical frame-
work to describe the phenomena previously introduced.
Qualitatively, the mechanism of propagation works in
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the following way. Once the reaction starts at one point,
typically through a chain branched process, the main as-
sumption is that the local stress is modified. This local
modification of the stress propagates towards neighbour-
ing regions, which results in a change of the local equilib-
rium of the reaction, and under proper conditions, in an
initiation of the reaction. The phase transformation may
therefore propagate from point to point, with a velocity
of the order of the sound velocity. Note that similar ideas
have been proposed in this context in [8]. Mathematically,
this mechanism can be implemented by simply assuming a
variation of the sound velocity in the medium, as a func-
tion of the order parameter of the reaction, as we now
demonstrate.

In a solid, the evolution of the displacement field, u,
is given by Newton’s law: ρ∂2

t ui = −∂jτij . In the con-
text of linear elasticity theory the stress tensor, τ , is re-
lated to u by τij ∝ −E(∂iuj + ∂jui). Here, we consider a
1-dimensional simplified version of the problem, and ne-
glecting some minor complications of elasticity theory, we
write the evolution equation for u as:

∂2
t u− ∂x(V 2∂xu) = 0 (1)

where the sound velocity, V , is such that V 2 = E/ρ, up
to inessential constants.

In the problem considered here, the variable c de-
scribes the phase transformation (or the chemical reac-
tion). We assume that c evolves according to a tradi-
tional chain branched process, described by the familiar
kinetic function f(c) = Ac2(1 − c) − kc, c = 0 repre-
senting the metastable state. Equivalently, we use f(c) =

Ac(c+− c)(c− c−) (c± = 1/2(1±
√

1− 4k/A) [18]. Then,

∂tc = f(c) +D∂2
xc+ w(∂xu). (2)

A coupling term with the strain field, w(∂xu), has been
added to the usual diffusion equation for the concentration
field, c. Physically, it is assumed that the system cannot
stay in the metastable state when the strain field is too
high (a possibility is that the phase transition starts when
brittle destruction of the solid matrix occurs). Specifically,
we assume that w = 0 when the strain ∂xu is lower than a
threshold value, (∂xu)c. The term w is turned on when ∂xu
exceeds (∂xu)c: w(∂xu) = W0 for a time τ . If the constant
W0 is larger than the minimum of f , the metastable state
in equation (2) becomes unstable, so the system moves
towards its stable fixed point, see Figure 1. Another way of
modelling this coupling consists in adding a fixed constant,
c∗ > c− to c when (∂xu) becomes larger than (∂xu)c.

The diffusion term, D is assumed to be very small; we
will be mostly concerned with the D→ 0 limit.

In addition, we assume that the sound velocity in-
creases monotonically with c. On general grounds, it is
reasonable to expect a dependence of V 2 = E/ρ on c.
The qualitative idea put forward earlier that the reaction
modifies the stress suggests that E itself varies; we assume
here that it increases with c. In addition, in the cases dis-
cussed in the introduction (with the notable exception of
the “detonation boiling” problem) the phase transforma-
tion leads to a dilation of the medium (∂xu increases, ρ

Fig. 1. Schematic representation of the function f(c)+w(∂xu).
The function f + w(∂xu) is positive underneath the graphs.
When the stress, ∂xu, is lower than the critical value, (∂xu)c,
the system can be either in the metastable state, c = 0, or in
the stable state c = c+. When the stress exceeds the critical
value, the metastable state disappears, so the system moves
towards the new stable state, c = cf .

decreases), making plausible the hypothesis that V 2(c) in-
creases monotonically with c. We simply use V 2(c) in the
model equation (1). The precise dependence of V 2(c) is
not crucial for the following discussion.

Although equations (1, 2) are plausible, they clearly in-
volve a number of simplifying assumptions. As we show in
turn, the hypothesized coupling between c and the strain
permits to reproduce a number of qualitative features of
the fast phase transformations observed in nature.

We begin by observing that any state with a uniform
value of (∂xu) = (∂xu)0, and with c = 0 is a steady state.
Because of the explicit coupling term w(∂xu), a mechani-
cal perturbation may induce a phase transformation. Sim-
ilarly, a perturbation in c leads to a perturbation in the
strain field. This can be seen by linearizing the equation
of motion around the state c = 0 and ∂xu = (∂xu)0:

∂2
t δu− V

2(0)∂2
xδu =

dV 2

dc
(c = 0)∂xu0∂xδc. (3)

The right hand side of equation (3) is proportional to the
perturbation in c, and acts as a source term for the elas-
ticity equation.

We now investigate the existence of travelling wave
solutions, corresponding to the stable state at x → −∞,
invading the metastable state (c = 0 and ∂xu = (∂xu)0

when x→∞), so the front velocity is positive: vf > 0. It is



A. Pumir and V.V. Barelko: Detonation type waves in condensed matter 381

convenient to introduce the comoving frame: ξ = (x−vf t),
leading to the equation of motion:

∂ξ

(
(V 2(c)− v2

f )∂ξu
)

= 0, (4)

− vf∂ξc = f(c) +D∂2
ξ c+ w(∂ξu). (5)

Equation (4) may be integrated once, leading to:

(V 2(c)− v2
f )∂ξu = (V 2(0)− v2

f )(∂xu)0. (6)

Equation (6) shows that the stress may diverge, when at
some point, v2

f = V (ce)2. Our model certainly cannot be
used to describe a situation where ∂ξu→∞. This feature
suggests that the model should be modified, and that me-
chanical losses should be taken into account. In any event,
the divergence does not occur when the front velocity is
outside of the range of variation of the sound velocity in
the material (i.e., when either vf is smaller than the sound
velocity in the metastable phase, or vf is larger than the
sound velocity in the stable phase).

The limit D → 0 is expected to be singular, since
the diffusion term is the highest derivative term in equa-
tion (5). With this restriction in mind, we analyze first
the D = 0 case.

The solution ahead of the front (for ξ > 0) is such that
c = 0 and ∂ξu = (∂xu)0. This can be seen by linearizing
equation (5) in the metastable region (ξ →∞ and c ≈ 0,
∂ξu < (∂xu)c), which leads to: −vf∂ξc = f ′(0)δC. The
only non zero solution of this equation is a growing ex-
ponential: δc = c̃ exp(αξ), α ≡ −f ′(0)/vf > 0. As a re-
sult, the solution ahead of the front must be uniform. The
only non trivial solution that may exist in this model is
by assuming that at a given location, say at ξ = 0, ∂ξu
jumps to a value (∂ξu)f > (∂xu)c, while c jumps to a value
c∗ > c−. Provided f(c) > 0 for c∗ < c < 1, equation (5)
can be integrated from ξ = 0 to ξ → −∞ with the proper
boundary conditions, ensuring the existence of a solution.
Equation (6) then implies that:(

v2
f − V

2(0)

v2
f − V

2(c∗)

)
=

(∂ξu)f

(∂ξu)0
> 1. (7)

Because of our assumption that V 2 is a monotonously
increasing function of c, V 2(c∗) > V 2(0), equation (7) im-
plies that v2

f must be larger than V 2(c∗), hence, the wave is
necessarily supersonic. The solution of this problem is not
unique: assuming that c∗ and (∂xu)c are given, there exists
a continuum of solutions parametrized by vf , or equiv-
alently, by (∂ξu)f . The range of propagation velocity is:
V 2(c∗) < v2

f < V 2(c∗)+(V 2(c∗)−V 2(0))(∂xu)0/((∂xu)c−
(∂xu)0). In order that the stress remains finite everywhere
(vf is larger than the sound velocity in the stable phase),
the value of the ratio ru ≡ (∂xu)0/(∂xu)c must be close
to 1.

The fronts found in this problem are expected to be
stable in the sense that a small amplitude perturbation
added to the solution eventually decays, and a new sta-
tionary solution with possibly a slightly different velocity
arises [19].

A better description of the front can be obtained by
taking into account some loss term, such as diffusion. Be-
low, we show that the degeneracy found above is lifted
when D 6= 0.

In the D 6= 0 case, slow travelling waves can be ob-
tained when the coupling between the phase transforma-
tion (the c-equation) and the stress does not turn on. This
is effectively the case when the stress is always smaller
than the threshold value, (∂xu)c. The problem reduces
then to the standard reaction diffusion:

−vf∂ξc = f(c) +D∂2
ξ c (8)

which is known to have solutions, propagating with a
velocity vf =

√
DA/2(c+ − 2c−) when f(c) = Ac(c −

c−)(c+ − c). The wave propagation is therefore controlled
by diffusion. In the following, we consider the case where
the sound velocity is much larger than the velocity of
waves controlled by diffusion: V (0)2/(AD)� 1.

Once c(ξ) is known, the stress ∂ξu is determined from
equation (6). The condition that the stress remains every-
where smaller than the threshold value is: (∂xu)0(v2

f −
V 2(0))/(v2

f − V 2(1)) < (∂xu)c. Clearly, this condition
is automatically satisfied if the velocity vf is subsonic:
vf < V (0) < V (1), which is the case when D is small
(we have assumed that (∂xu)0 < (∂xu)c).

In addition to the family of slow propagating waves,
driven by diffusion, and effectively without any coupling
with the stress field, one may also find supersonic waves
in this problem, provided the stress exceeds (∂xu)c. The
value of c where the coupling term turns on, cs, satisfies:

v2
f − V

2(0)

v2
f − V

2(cs)
(∂xu)0 = (∂xu)c. (9)

Once again, the wave must be supersonic (v2
f > V 2(cs) >

V 2(0)) for equation (9) to be satisfied.

The explicit determination of the solution of equa-
tion (5) requires a more complete calculation. The exis-
tence of a propagating solution can be proved provided
the condition:

∫ cf
0 f(c′)dc′ +W0(cf − cs) > 0, holds (cf is

the stable state under stress, solution of f(cf) +W0 = 0).
It can be carried out exactly in the simplified case where
the function f(c) is piecewise linear: f(c) = −Ac if c < c−
and f(c) = −A(c+ − c) otherwise, and with the extra as-
sumption that the term w(∂ξu) never turns off, once it
has been turned on, i.e., τ → ∞. Anticipating that the
physically relevant solution corresponds to a small value
of the parameter cs (cs < c−), the solution may be de-
termined by considering separately the three domains: (i)
where 0 ≤ c ≤ cs, (ii) where cs ≤ c ≤ c− and (iii) where
c ≥ c−, by solving separately in each domain and then, by
matching the solution and its derivative at the boundaries.
In each domain, the solution can be expressed as a combi-
nation of exponentials: c = A− exp(α−ξ) + A+ exp(α+ξ),

where α± = (−vf±
√
v2

f + 4DA)/2D, plus some constants,
depending on the region (i–iii).
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(a) (b)

Fig. 2. Profile of the concentration c, when D = 0 (a) and when D 6= 0 (b). The profiles shown were obtained by solving the
reaction diffusion equation with the piecewise linear function: f(c) = −Ac when c < c− and f(c) = −A(c+ − c) otherwise (the
parameters are c− = 0.2, c+ = 1). In (a), the size of the front is of order vf/A; c∗ = 0.22. In (b), the dashed line corresponds to
the solution for the slow, diffusive wave (v/

√
AD = 1.5) and the solid line corresponds to the fast wave (vf/

√
AD = 15). The

sizes of the fronts are of order vf/A.

The matching condition leads to the relation:

cs
(α+ − α−)

α+
− γ =

c+ exp

[
−
α−

α+
ln

(
α− − α+

α−

γ − c−
γ

−
c+

γ

α+

α−

)]
, (10)

where γ ≡ W0/A. As we are interested in velocities large

compared to the diffusive velocity: vf �
√
DA, α− ≈

−vf/D and α+ ≈ A/vf ; hence |α−| � |α+|. In this limit,
(α−−α+)/α− ≈ 1+(AD)/v2

f , so the RHS of equation (10)
reduces to c+ exp(v2

f /(AD)) ln(1−c−/γ+O(1/v2
f )), a term

that tends to zero when vf → ∞. As the right hand side
of equation (10) reduces to ≈ csv

2
f /(AD) − γ, one finds

that cs ≈ γDA/v2
f , or equivalently:

vf =

√
DAγ

cs
· (11)

Importantly, this value of vf can be made arbitrarily large,
by letting the value of c at the shock, cs, go to 0. Mathe-
matically, equation (11) expresses that the rapidly grow-
ing mode when ξ → −∞must remain bounded behind the
shock (for ξ . 0). For this reason, we expect that equa-
tion (11) is in fact independent of the precise shape of
the function f . The concentration profile of the solution is
shown in Figure 2. The profile of the fast wave (full line)
is broader than the profile of the slower, diffusive wave
(dashed line) by a factor ≈ vf/

√
DA.

To completely determine the solution, one must solve
simultaneously the two equations (9, 11), which leads to:

DAγ

cs
=
V 2(cs)(∂xu)c − V 2(0)(∂xu)0

(∂xu)c − (∂xu)0
· (12)

Fig. 3. Schematic profile of stress, ∂xu corresponding to the
fast wave solution shown in Figure 2b. The velocity chosen is
V 2(c) = V 2(0)(1 + 0.2 tanh(x/0.2)); (∂xu)c/(∂xu)0 = 1.04.

Since V 2(0)/AD � 1, the solution of this equation is
small: cs < γDA/V 2(0). The propagation velocity in-
creases when the ratio ru ≡ (∂xu)0/(∂xu)c increases, and
diverges when u → 1. In order to avoid the divergence of
strain previously discussed, propagating waves may only
exist when the ration ru is close enough to 1, so the prop-
agating velocity is larger than the sound velocity in the
stable phase. The stress profile in the case (ru − 1)� 1 is
shown in Figure 3.

In conclusion, we have proposed a simplified model
describing propagation of fast detonation like autowaves,
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resulting from an interaction between mechanical stress
and phase or chemical transformation. Although our
model is somewhat preliminary and calls for improve-
ments, we expect that the physical ideas put forward are
important to understand fast propagation in condensed
phases.

We have shown the existence of two branches of propa-
gating wave solutions of equations (1, 2) when D 6= 0. The
slow, diffusive waves are obtained when the coupling be-
tween chemistry and mechanical stress does not turn on.
They simply correspond to the well-known propagating
fronts, familiar in the context of reaction diffusion sys-
tems. The fast, supersonic waves are obtained when the
mechanical stress reaches the critical value, (∂xu)c, so the
coupling term w turns on and it starts the phase (chemi-
cal) transformation. Interestingly a continuum of fast (su-
personic) solutions also exists when D = 0. The intro-
duction of a diffusion term, effectively a loss term, selects
out of this infinite set a unique wave. We suspect that
the introduction of a loss term in the mechanical equation
would lead to a qualitatively similar result. In this sense,
the situation is very reminiscent of the situation in gaseous
detonation. The presence of two branches of solutions has
also been observed in the reaction-diffusion model pro-
posed in [12,13] to describe the coupling between thermal
stress and phase transformation. The model we have con-
sidered in this paper is mathematically very different since
the problem is of hyperbolic type, which is natural to de-
scribe propagation of elastic waves. The results obtained
in this work suggest a rich and interesting structure.

Our model may capture the fast (supersonic) waves
found in heavy metal azides and in hard glasses, but most
likely fail to describe the propagation regimes found in
“detonation boiling” and cryochemistry, which are found
to be subsonic. Stability issues have not been addressed in
this work. We simply remark that fast solutions are very
sensitive to perturbations of the stress field ahead of the
front. Interesting questions concerning the time evolution
of the solution, and the influence of the finite size of the
samples (particularly important since the reaction front
is found to be very wide) remain to be studied. The
problem of propagation of a stable state into an unstable
state (f(c) = Ac(c+ − c)) leads to an interesting selection

problem [2], which will be investigated separately.
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his constant interest and support.
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